Pre-Calculus Fall Final Exam 2014

Name:_____ Pd:___ Date:____

Part 1: No calculator

Question: 1

Question: 2

Which of the following is true about symmetry of an equation?

- A) Graph is **symmetric with respect to the x-axis** if for every point (x,y) on the graph, the point (-x, y) is also on the graph.
- B) Graph is **symmetric with respect to the y-axis** if for every point (x,y) on the graph, the point (-x, -y) is also on the graph.
- C) Graph is **symmetric with respect to the origin** if for every point (x,y) on the graph, the point (-x, -y) is also on the graph.
- D) Graph is **symmetric with respect to the y-axis** if for every point (x,y) on the graph, the point (x, -y) is also on the graph.

Which of the following is one of the roots of the equation below?

$$\frac{2}{x+2} + \frac{3}{x-1} = \frac{-8}{5}$$

- A) 4 B) $\frac{1}{8}$

- C) -8 D) $-\frac{1}{8}$

Question: 4

Solve for x:

$$4^{5x-1} = \sqrt[3]{32}$$

- $A)^{\frac{11}{10}}$

- B) $\frac{1}{30}$ C) $\frac{11}{30}$ D) $-\frac{11}{30}$

Question: 5

Determine the Period of the trigonometric function below.

$$f(x) = \frac{1}{2}Sin\left(\frac{3}{2}x - \pi\right)$$

A)
$$\frac{4}{3} \pi$$

B)
$$\frac{2}{3}\pi$$

C)
$$\frac{3}{4}\pi$$

B)
$$\frac{2}{3}\pi$$
 C) $\frac{3}{4}\pi$ D) $\frac{3}{2}\pi$

Question: 6

Solve for x, from the log equation below.

$$\log_6(35x + 6) - \log_6 x = 2$$

- A) $\frac{42}{36}$ B) 6

- C) -6 D) Not here

Evaluate the following trigonometric expression:

 $Sin 80^{0}Sin 50^{0} + Sin 10^{0}Sin 40^{0}$

A)
$$-\frac{\sqrt{3}}{2}$$

B)
$$\frac{1}{2}$$

C)
$$\frac{\sqrt{2}}{2}$$

$$D)\frac{\sqrt{3}}{2}$$

Question: 8

A rectangle is inscribed in a semicircle of radius 2 as shown below. Let P = (x, y) be the point on quadrant 1 that is a vertex of the rectangle and is on the circle $(y = \sqrt{4 - x^2}).$

Express the area of the rectangle as a function of x.

A)
$$x\sqrt{4-x^2}$$

B)
$$2x\sqrt{4-x^2}$$

A)
$$x\sqrt{4-x^2}$$
 B) $2x\sqrt{4-x^2}$ C) $\sqrt{8x-2x^3}$ D) $-x\sqrt{4-x^2}$

D)
$$-x\sqrt{4-x^2}$$

Question: 9

For which of the following graphs of f does f(x) = f(-x) for all values of x shown?

Solve for y without the use of a calculator.

If $4^{y} = 8^{x}$ and $3^{x} = 2(3^{y})$

A)
$$\frac{3 \ln 2}{\ln 3}$$

C)
$$\frac{-3 \ln 2}{\ln 3}$$

B)
$$\frac{-2 \ln 2}{\ln 3}$$

$$D) \frac{2 \ln 2}{\ln 3}$$

Question: 11

The terminal side of an angle θ , in standard position passes through the point (7, -24). What is $\csc\theta$?

a.
$$-\frac{24}{25}$$

b.
$$-\frac{25}{24}$$
 c. $\frac{24}{25}$

c.
$$\frac{24}{25}$$

d.
$$-\frac{25}{7}$$

e.
$$-\frac{24}{7}$$

Question: 12 Calculator allowed**

An airplane flies from city A to city B, a distance of 150 miles, and then turns through an angle of 40° and heads to city C, as shown in the figure below.

If the distance between city A and city C is 300 miles, how far is it from city B to city C?

- A) 169.18 miles
- B) 140°
- C) 200 miles
- D) 185.23 miles

Question: 13

Find the exact value of the expression below.

$$Sin^2(20^0) + \frac{1}{Sec^2(20^0)}$$

- A. 0
- B. 20
- C. 1
- D. 1
- E. None

Question: 14

From the double-angle formula below, derive a half-angle formula.

$$Cos^2\,\alpha=\,\frac{1+\cos(2\alpha)}{2}$$

A)
$$Sin\frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos\alpha}{2}}$$

C)
$$Cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

B)
$$Cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \sin \alpha}{2}}$$

D)
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{2}}$$

Which statement is completely true about the cubic function $f(x) = x^3$

- A) f is even, and always increasing.
- B) f is odd and symmetric about the x-axis
- C) f is odd, symmetric about the y-axis, and has no local minimum
- D) f is odd, symmetric about the origin, and has no local maximum

Question: 16

Form the difference quotient for $f(x) = \frac{1}{5x+7}$ and evaluate it at x = -3.

a.
$$\frac{-1}{8}$$

c.
$$\frac{-5}{40h-64}$$

d. $\frac{5}{40h-64}$

b.
$$\frac{-5h}{64-40h}$$

d.
$$\frac{5}{40h-64}$$

Question: 17

If θ is an acute angle and $\sin(\theta) = \frac{3}{5}$, Evaluate $\sin(2\theta) + \cos(2\theta)$

- A) $\frac{41}{25}$ B)) $\frac{31}{25}$ C)) $\frac{17}{25}$ D)) $\frac{17}{5}$

Question: 18

Evaluate the discriminant of the quadratic equation below.

$$y = 2x^2 - 3x + 4$$

A) -23

- B) -41
- C) 41

D) Not here

What is the domain for $f(x) = \frac{1}{\sqrt{5^{2x-1} - 125}}$?

A. $(-\infty,\infty)$

D. $(2, \infty)$

B. $(-\infty, 2) \cup (2, \infty)$

E. None of these

C. $\{3,4\}$

Question: 20

Find the exact value of the expression below.

 $6\cos(\frac{3\pi}{4}) + 2\tan(-\frac{\pi}{3})$

A.
$$3\sqrt{2} - 2\sqrt{3}$$

B.
$$-3\sqrt{2} - 2\sqrt{3}$$

A.
$$3\sqrt{2} - 2\sqrt{3}$$
 B. $-3\sqrt{2} - 2\sqrt{3}$ C. $-3\sqrt{2} + 2\sqrt{3}$

D. None

Question: 21

Evaluate the following log:

$$\log_8 \sqrt{2}$$

A)
$$\frac{3}{2}$$
 B) $\frac{2}{3}$ C) $\frac{1}{6}$

B)
$$\frac{2}{3}$$

C)
$$\frac{1}{6}$$

D) Not here

Question: 22

Evaluate the Axis of symmetry of the quadratic equation below.

$$y = 2x^2 - 3x + 4$$

A)
$$x = \frac{4}{3}$$

B)
$$x = \frac{-3}{8}$$

A)
$$x = \frac{4}{3}$$
 B) $x = \frac{-3}{8}$ C) $x = \frac{-3}{4}$

D)
$$x = \frac{3}{4}$$

Which of the following can be the properties of the given polynomial?

A) $n \ge 2$ even, $a_n < 0$

C) $n \ge 3$ odd, $a_n < 0$

B) $n \ge 3$ odd, $a_n > 0$

D) $n \ge 2$ even, $a_n > 0$

Question: 24

Which answer choice is an incorrect statement about functions and their inverses?

- A The domain values of f(x) are equal to the range values of $f^{-1}(x)$ and the domain values of $f^{-1}(x)$ are equal to the range values of f(x).
- **B** The graphs of f(x) and $f^{-1}(x)$ are reflections of each other over the line y = x.
- **C** To determine the equation for $f^{-1}(x)$, first determine the equation for $f(\frac{1}{x})$ and then solve that equation for x.
- **D** The point (b, a) is on the graph of $f^{-1}(x)$ when the point (a, b) is on the graph of f(x).

Which of the following can be a representation of the Law of cosine, for a triangle with sides a, b, c and opposite angles α , β , γ , respectively?

A)
$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

B)
$$a^2 = c^2 + b^2 - 2ab\cos(\gamma)$$

C)
$$c^2 = a^2 + b^2 - 2ab\cos(\alpha)$$

D)
$$c^2 = a^2 + b^2 - 2ab\cos(\beta)$$

Question: 26

(From Free Response # 3)

Use completing the square method to write the quadratic function below in the form $f(x) = a(x - h)^2 + k$, and give the value of k.

$$y = 2x^2 + 3x - 4$$

A)
$$\frac{41}{8}$$

B)
$$-\frac{41}{8}$$
 C) $\frac{23}{8}$ D) $-\frac{23}{8}$

C)
$$\frac{23}{8}$$

D)
$$-\frac{23}{8}$$

Question: 27

Determine $\lim_{h\to 0} \frac{[f(x+h)-f(x)]}{h}$, if $f(x) = 2x^2 - 3x$

A.
$$4x - 3 + 1$$

B.
$$4x - 3$$

C.
$$4x + 2h - 3x$$

A.
$$4x-3+h$$
 B. $4x-3$ C. $4x+2h-3x$ D. $4x-3+2h$

E. None

Question: 28

Determine the Period of the trigonometric function below.

$$f(x) = \frac{1}{2}Sin\left(\frac{3}{2}x - \pi\right)$$

A)
$$\frac{4}{3}$$
 π

B)
$$\frac{2}{3}\pi$$

C)
$$\frac{3}{4}\pi$$

B)
$$\frac{2}{3}\pi$$
 C) $\frac{3}{4}\pi$ D) $\frac{3}{2}\pi$

If $f(x) = 4^{\frac{x-8}{2}}$ and $g(x) = 3^{2-x}$ determine $f_0 g(x)$:

A)
$$4^{\frac{3(2-x)-8}{2}}$$

C)
$$4^{\frac{9-8(3^x)}{2(3^x)}}$$

B)
$$4^{\frac{9-8(3^{x})}{6^{x}}}$$

D)
$$2^{\frac{9-8(3^x)}{4(3^x)}}$$

Question: 30

If $\frac{1}{3} \log_3 x = 2 \log_3 2$, then x =?

A. 8 B. 4/3 C. 64

D. 12

Question: 31

Determine if the statement below is true or false about inverse cosine in the first and second quadrants.

"y = $\cos^{-1}(x)$ means x = $\cos y$, where $-1 \le x \le 1$ and $0 \le y \le \pi$ "

- A) True
- B) Even
- C) False
- D) Odd

Question: 32

Determine $\frac{[f(x+h)-f(x)]}{h}$, if $f(x) = 2x^2 - 3x$

A. 4x-3+h B. 4x-3 C. 4x+2h-3x D. 4x-3+2h E. None

Question: 33

For the polynomial above, does the function have any zero with multiplicity greater than 1.

A) No, it does not.

B) Yes, it does

C) Not enough information

Question: 34

Find the exact value of the expression below.

Sin(- 40°)Csc(40°)

A. 1/2 B. – 40 C. – 1

D. 1

E. None

Question: 35

If
$$\log_a(3^a) = \frac{a}{2}$$
, then a = ?

A) 8

B) 2

C) 27

D) 9

Question: 36

Find the exact value of the trigonometric function below if Sin $\theta = \frac{4}{5}$, for $0^{\circ} \le \theta \le 90^{\circ}$

 $\tan \theta = ?$

A. $\frac{4}{3}$ B. $\frac{3}{5}$ C. 1 D. $\frac{3}{4}$

E. None

From Free response #1:

Is the degree of the polynomial even or odd?

- A) Even
- B) Odd

C) Neither even nor odd

Question: 38

If $3\log_2(x-1) + \log_2 4 = 5$, then x = ?

- A. 3
- B. 1

- C. 8
- D. None

Question: 39

Converting 135° into radians will yield?

- A) $\frac{2}{3}\pi$ B) $\frac{1}{3}\pi$ C) $\frac{3}{4}\pi$
- D) $\frac{3}{2} \pi$

Question: 40

Evaluate the expression below:

$$\log_3 81 + \log_5 125$$

- A) 12
- B) 14
- C) 8
- D) 7

Question: 12 Calculator allowed**

An airplane flies from city A to city B, a distance of 150 miles, and then turns through an angle of 40° and heads to city C, as shown in the figure below.

If the distance between city A and city C is 300 miles, how far is it from city B to city C?

- A) 169.18 miles
- B) 140°
- C) 200 miles
- D) 185.23 miles

Free Response Problem #1

- A) Is the degree of the polynomial above even or odd?
- B) Is the leading coefficient of the polynomial above positive or negative?
- C) Is the function above even, odd, or neither?
- D) Why is x^2 necessarily a factor of the polynomial?

Free response Problem #2

Solve for x:

$$3 \cdot 2^x - 30 \cdot 2^{0.5x} + 48 = 0$$

Free response Problem #3

Use completing the square method to write the quadratic function below in the form of: $f(x) = a(x - h)^2 + k$,

$$y = 2x^2 + 3x - 4$$

Free response Problem #4

For the given function $f(x) = 3x^2 + 5x - 4$,

a) Determine the expression for the difference quotient for f, leave answer in simplest form. $\frac{f(x+h)-f(x)}{h}$

b) Evaluate the limit of the difference quotient as h approaches zero.

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$